Permutations avoiding a pattern from Sk and at least two patterns from S3

نویسنده

  • Toufik Mansour
چکیده

In this paper, we find explicit formulas or generating functions for the cardinalities of the sets Sn(T, τ) of all permutations in Sn that avoid a pattern τ ∈ Sk and a set T , |T | ≥ 2, of patterns from S3. The main body of the paper is divided into three sections corresponding to the cases |T | = 2, 3 and |T | ≥ 4. As an example, in the fifth section, we obtain the complete classification of all cardinalities of the sets Sn(T, τ) for k = 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Permutations avoiding a pattern from S k and at least two patterns from S 3

In this paper, we find explicit formulas or generating functions for the cardinalities of the sets Sn(T, τ ) of all permutations in Sn that avoid a pattern τ ∈ Sk and a set T , |T | ≥ 2, of patterns from S3. The main body of the paper is divided into three sections corresponding to the cases |T | = 2, 3 and |T | ≥ 4. As an example, in the fifth section, we obtain the complete classification of ...

متن کامل

Permutations Containing A Pattern Exactly Once And Avoiding At Least Two Patterns Of Three Letters

In this paper, we find an explicit formulas, or recurrences, in terms of generating functions for the cardinalities of the sets Sn(T ; τ) of all permutations in Sn that contain τ ∈ Sk exactly once and avoid a subset T ⊆ S3 where |T | ≥ 2.

متن کامل

RESTRICTED 132-AVOIDING k-ARY WORDS, CHEBYSHEV POLYNOMIALS, AND CONTINUED FRACTIONS

We study generating functions for the number of n-long k-ary words that avoid both 132 and an arbitrary `-ary pattern. In several interesting cases the generating function depends only on ` and is expressed via Chebyshev polynomials of the second kind and continued fractions. 1. Extended abstract 1.1. Permutations. Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}, written in one...

متن کامل

Refined Restricted Permutations Avoiding Subsets of Patterns of Length Three

Define Sk n(T ) to be the set of permutations of {1, 2, . . . , n} with exactly k fixed points which avoid all patterns in T ⊆ Sm. We enumerate Sk n(T ), T ⊆ S3, for all |T | ≥ 2 and 0 ≤ k ≤ n.

متن کامل

Restricted Permutations by Patterns

Recently, Babson and Steingrimsson (see [BS]) introduced generalized permutations patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. In this paper we study the generating functions for the number of permutations on n letters avoiding a generalized pattern ab-c where (a, b, c) ∈ S3, and containing a prescribed number of occurrences of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2002